Professional-Machine-Learning-Engineer Exam Question 21

A Data Scientist is working on an application that performs sentiment analysis. The validation accuracy is poor, and the Data Scientist thinks that the cause may be a rich vocabulary and a low average frequency of words in the dataset.
Which tool should be used to improve the validation accuracy?
  • Professional-Machine-Learning-Engineer Exam Question 22

    Your team is building a convolutional neural network (CNN)-based architecture from scratch. The preliminary experiments running on your on-premises CPU-only infrastructure were encouraging, but have slow convergence. You have been asked to speed up model training to reduce time-to-market. You want to experiment with virtual machines (VMs) on Google Cloud to leverage more powerful hardware. Your code does not include any manual device placement and has not been wrapped in Estimator model-level abstraction. Which environment should you train your model on?
  • Professional-Machine-Learning-Engineer Exam Question 23

    A Machine Learning Specialist is using an Amazon SageMaker notebook instance in a private subnet of a corporate VPC. The ML Specialist has important data stored on the Amazon SageMaker notebook instance's Amazon EBS volume, and needs to take a snapshot of that EBS volume. However, the ML Specialist cannot find the Amazon SageMaker notebook instance's EBS volume or Amazon EC2 instance within the VPC.
    Why is the ML Specialist not seeing the instance visible in the VPC?
  • Professional-Machine-Learning-Engineer Exam Question 24

    A company uses a long short-term memory (LSTM) model to evaluate the risk factors of a particular energy sector. The model reviews multi-page text documents to analyze each sentence of the text and categorize it as either a potential risk or no risk. The model is not performing well, even though the Data Scientist has experimented with many different network structures and tuned the corresponding hyperparameters.
    Which approach will provide the MAXIMUM performance boost?
  • Professional-Machine-Learning-Engineer Exam Question 25

    A credit card company wants to build a credit scoring model to help predict whether a new credit card applicant will default on a credit card payment. The company has collected data from a large number of sources with thousands of raw attributes. Early experiments to train a classification model revealed that many attributes are highly correlated, the large number of features slows down the training speed significantly, and that there are some overfitting issues.
    The Data Scientist on this project would like to speed up the model training time without losing a lot of information from the original dataset.
    Which feature engineering technique should the Data Scientist use to meet the objectives?